Absolutely meaningless, the bit
opens to the digital world, and art in particular, the
way to universality of the cloud. Works grow in
size and complexity, from sampling to coding through mounting and
grammatical generation. Life, algorithmic or transformed, spreads into the
networked art of transmedia.
I feel the Bit beating in my
heart
No meaning but power.
I see the Cloud whirling high
overhead
Calling us for an answer.
I share the Life, this growing
spread.
The World we build together.
LEDs, icons of bits, spiraling in a cloud
The bit is today 67 years old.
More precisely, the present current meaning of "bit" in the digital
world.
The date of birth is precisely known: 9 January 1947,
his father John W. Tukey, his godfather Claude E. Shannon, who made his fame.
The sky map was favorable. In these years, some
of the best brains in logic, mathematics, communications, biology,
psychoanalysis and nuclear physics were concentrated in the US. They used the
best of various technologies from precision mechanics, chemistry, electricity and electronics (see for instance Dyson [23]).
And, nearly at the same time, the binary nature of life was made explicit by
the discovery of DNA by Watson and Crick.
The centrality of the bit was
soon heralded by John Von Neumann and several authors [15], who wrote " We
feel strongly in favor of the binary system, for three reasons :
- hardware implementation (accuracy, costs),
- the greater simplicity and speed with which the elementary operations
can be performed (arithmetic part),
- logic, being a yes-no system, is fundamentally binary, therefore a
binary arrangement
contributes very significantly towards producing a
more homogeneous machine, which can be better integrated and is more efficient.
During the second half of the
19th century, pre-digital models had taken force, for instance (mainly in the
Arts domain):
- the view of language as a system of oppositions (then of bits, without saying
it), with Saussure [55],
- the "elementarization" (taking the word
from Estelle Thibault [62]) of architecture, with the database/linguistic
approaches or Viollet-le-Duc's Dictionnaire
de l'architecture [64] or Charles Blanc's Grammaire des arts du dessin [12]; no less
graphic but slightly less artistic was the vogue in France of descriptive
geometry, heir and crownprince or the traditional
architectural stone cutting (see Asancheyev [13]),
- fragmentation in painting (impressionism, pointillism, cubism, collage,
Bauhaus abstraction...),
- the formalization of music, with major steps as the Well
tempered harpsichord of J.S.Bach,
harmony and counter point, and in the late 19th century and early 20th, the new
formalisms of dodecaphonism and serialism, and the
publication of books like The Mathematics of the Arts, by Joseph
Schillinger [59],
So the bit was borne as the focal point in a convergent process of
fragmentation, division, elementarization.
Would the new paradigm of
science and technology bring it's
proper name: binary? In fact, no. The term is no so
pleasant by itself, and worse enough when coupled with mathematics,
information, and still more in art. Then, the many good fairies circling the
cradle and the nude newborn, choosed names as decent
clothes matching their conceptual systems and meaning connotations.
The winners, in the common linguistic practice, are the mathematicians, which
define the bit a the unit in numeration on base 2.
The formal logicians use quite the same language, though insisting on the
true/false pair (which can in practice be represented also by 0 and 1).
The circuit makers tend to use the term "logic" as opposed to
"analog". Some domains of art use rather
"electronics". It's frequent in music (possibly reduced to
"electro") and, more surprisingly, has been reborn in poetry by the
American ELO (Electronic Literature Organization).
But, taken in itself, the bit is nothing of all that.
No more a number than a true/false modality. It is no more than a signal which
can take two different values.
You cannot cut a bit into
smaller parts .
As a material object, for instance, there is no meaning in cutting the thing in
two. It is strictly atomic.
Even more radically, if you use a bit as unit in numeration, the 1 is the
smallest natural number (integer) greater than 0. If you want to represent
smaller numbers, you have to add bits, or in the decimal way
: 0,1, 00,1... or also using floating point coefficients.
You can imagine "spiritual
bits" in a immaterial world, but you cannot
represent, store, transmit or process them without matter.
A bit is somewhere in space and time. Then it has an address. This address may
by completely absolute (like in a GPS, but with a precision in nanometers or
less.) But in general, this address wont
be used directly, but through several layers of indirect addressing controlled
by the software. Note also that this matter may be purely dynamic, if the bit
is travelling on air or along a copper or fiberoptic line. To be accessed (read
or written), it must spend some quantity of energy, and if "live",
even when not active.
As is well known, the quantity of matter and energy per bit has exponentially
decreased since the 1960's, and will probably continue
to do so in the years to come, with some limit at the quantum level. And the
time to transmit or process one bit is decreasing in similar trends.
Remains open a difficult question: bit is an absolute limit in fragmentation.
Sharp. There is no similar limit in matter. The atom is not a-tomic. Instead physics bump
into the stochastic limits of quanta and relativity. For at least the 1970's,
the question of how many bits can be stored on a gram of matter, or of how many
atoms are necessary to represent a bit or operate a logic gate has evolved. Two
tracks are nowadays actively explored, quantum computing and DNA computing.
They are presently out of the art scope.
Shannon is famed for having
formulated the separation of information and meaning [65]. It's complete at
this elementary level: So the bit is totally
meaningless, and from this absolute nakedness arises it absolute power to mean
anything... provided bits are connecte in sufficient
number.
We can even say that, in practice, a bit does
not "exist" if it is not known, handled or controlled by another bit
or bitset. It's the "subjectivist" facet of
the bit and bitsets. By itself, you cannot know what
it represents, how you can operate on it, and even know where in space and time
it is materialized.
Fragmentation, indeed, has a meaning. It is a
traumatism, and as soon as we have fragmented, we long for reunification. In
the windstorm of information and emotions around us, we need to find back unity.
The nostalgia of a lost Eden, where intuition and analogy (including analog
computers in the 1950-1970s) gave life to instinct, in a
ineffable expression of the soul. So we long for the
Cloud
Let's use "The Cloud"
in slightly more global sense than the NIST definition of cloud computing
" a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction...".
We shall take is as including the contents (big data, websites, transmedia) and
not forget its powerful actors, be they public or corporate.
This historical trend to
fragmentation has always gone along in duality with a quest for Universality.
Aristotle was the teacher of Alexander the Great as well as the authors of De
partibus animalium,
and if Shannon launched the bit term, it was to answer worldwide communication
issues much more than computer development. Machines tend to unite.
There is the famous sentence of Jean-Charles Sismondi. "In truth then,
there is nothing more to wish for than that the king, remaining alone on the
island, by constantly turning a crank, might produce, through automata, all the
output of England." [58].
Jules Verne [63] and AlberT Robida
[52], [53] had foreseen the web in the 1880's. And at the time when the bit was
born, Lewis Mumford stressed in his book entitled -
note the singular - The myth of the Machine [50].
It may be inspiring, but also
misleading, to think the Cloud as a sphere including our world, with the bit as
a point in the center, and various levels of bitsets,
or beings, growing as successive layers.
Today. the Cloud is rapidly thickening. We assume here, perhaps without still
sufficient evidence, that the global sphere embodies the convergence of series
of generalizations/globalizations:
- the material sphere of Earth (and the outer space as far as we are present in
it),
- the machinic convergence into a sphere of interconnected machines
- the economic and politic convergence of "globalization", with its
markets, events and organizations
- the convergence of arts in transmedia, giving a renewed reality to the
Wagnerian idea of "total art" (Gesamtkunstwerk)
- the convergence of values into universality... with global conflicts
upon/for/against these values.
Materially, this convergence
draws to a total digitization of the material World.
A progressive control of everything down to an ever high
resolution applied to everything. A extrapolation of
the "Internet of the things". That calls for a common language, for
instance the URL (Uniform Resource Locator) URI (Universal Resource
Identifier), GPS coordinates, UTC times and many standards.
The interconnectivity goes by
itself. When bitset grow, they tend to become more
and more interconnected, up to form a global system: transmedia, cloud, big
Data, Internet of the things. And the meaning as a global issue. Everything
becomes "massively mulitiplayer online". It
has been seen early, as we have said.
High level bitsets,
can be both strongly autonomous, densely connected and deeply meaningful, thus,
at the limit, thus forming a unified whole at the opposite of the single bit.
The bitsets become meaningful for all the other ones.
Perhaps not easy to undersand. But it is here that
art, and particularly digital art, has its part to play, and a major one. We
are more and more immerged in this world.
In opposition to the bit, the Cloud calls us as a value. We look for universal
concepts, universal truth. We wrote Summas (in the
middle ages) then Encyclopedias (in the Age of Enlightenment). We have
Wikipedia and all the web today.. It has also the
moral attractiveness of the "common good".
Here finally comes the meaning and the sense. But it is a gradient, not a final
point we can reach. And the unification dreams of the great conquerors
(Alexander, the Roman Empire, Gengis Khan, Napoleon,
The British Empire, the modern USA leaders) made sense
for some decades.
Religion if not mystique have
connoted such views in Antiquity, with the hegemonic dreams of Abraham (semen tuum...), the universalist message of Christ and Mahomet.
And we can also compare the bit/cloud polarity to the self-negation of mystics
leading to ecstatic access to universal immediateness. See the classical Seeds of contemplation by
Merton [47] or, more scientific The
Psychology of the Mystics by Marechal [46].
Of course, the Cloud is not Heaven, nor infinite. It's dual to the bit, which
is not "null". We never reach the infinity of autonomy, connection
and meaning, no more than we can have a zero-matter bit, nor even a totally
meaningless bit. But this rich unity is something we cannot avoid to dream of and to aim to. It's from there that come the
meaning of all the rest, as well as the consistence and materiality come from
the basic bit.
The web gives a real time expression or Earths
entirety, inspiring Maurice Benayouns Emotions mechanics.
The cloud is no God, no more than the bit is
immaterial. But it really bears meaning, as a promise as well as a threat of
totalitarianism. Then the cloud must remain fragmented, in the line of the
Montesquieu's division of powers, for instance.
Life spreads in the middle spheres. Its
time to look at that more in detail.
You never see nor work directly
on separated bits, but on groups of bits.
To avoid any analogy with particular epistemology or
human sensori-motor organisation,
we shall use "bitset" to note sets of bits
without any prejudice on what they will be used for.
Other terms as "strings", "words" or "files" are
from start loaded with textual or operating system connotations.
A simple way of having several
bits connected is to have them on the same piece of matter. It's an important case,
but non "material" constructions of bitsets
are of the same importance.
What count is that we have some "handle" on this set, which includes
a way of finding its elements in the hardware. Among many examples, if your
present computer lets you access to a "defrag" function, you can see
a representation of the file distribution on your disks.
At another limit, your can consider the Web as a
(very large) bitset, where browsers give you access
to millions of subsets which all are physically located somewhere, but you
don't now and don't case where (unless you have the responsibility of their
security and continuity of existence).
This distribution of locations all around the world and the circulation of
information between them is a frequent source of inspiration for artists, as a
kind of "data visualization".
The number of bits in a bitset, its volume, or "mass" (the term opening
the way to a sort of thermodynamics) grows along
with different names, structures and functions. Let's sketch a scale:
- 1 bit. Nothing, but perhaps the digital clock,
- 8 - 64 bits. The "word" in the computer processor sense.
- 100 bits- several mega or gigabytes. The file. With its extension, header...
And the material supports. Works of art stay within this interval:
. Text: a short poem has at least a hundred characters, or one thousand bits. A
full fiction may reach one million characters.
. Still images : minimal ones, compressed, may be held
in 100 K bytes HD ones grow to millions of pixels of 24 bits
. Video: gigabytes.
- Beyond the gigabyte, we have large databases, encyclopedias, libraries and
collections of works of art.
- With peta and exabytes, we enter the "big data" and cloud.
Structures are necessary. Otherwise, complexity would rapidly send the bitsets beyond control. Indeed, without structures,
complexity grows exponentially with mass, if we use the Kolmogorov definition
(shortly) : "the smallest program able to
generate the object". A fully random bitset has
no shorter program than itself.
This relation of structure over mass is fundamental in aesthetics. We have
developed this topic in
Files are supposed to be
passive. But they can change independently of their creator:
- at random, for unknown or unpredictable causes,
- by an input and to answer in interaction,
- by their own activity, if they have a clock (the basic motor od digital
automata).
Bitsets integrate these changes into behaviors that
range from unpredictable chaos to elaborate answers to inputs, engaging
communication and self development (e.g. learning).
We propose levels of digitization,
according to the depth of fragmentation and composition. Everyone selects of
makes sets of compatible elements and assembles to meaningful, functional,
ethical or aesthetic criteria. Or just pleasure, why not?
Fragmentation and assembly are complementary operations, and open general
questions such as:
- How to make fragments ? Take them from nature, and
if so how to cut into life more or less naturally.
Or build fragments from nil.
- How to structure fragments in such a way that they can be limited to one and
only work, up to universal standards within a discipline (fonts combined; here,
digital versatility itself may be very helpful; we find here the problems of
standards and formats , from strictly local structures, possibly for text,
Pantone for colors...) and also transdisciplinary (the file formats and the
URL, for instance).
A key issue is: given the corpus of fragments, how to
combine them in space (e.g; foreground/background)
and time (texts, images, film cuts). It may be done at random or with strictly
formal rules, with as always optima to be searched in a good balance between
order and chaos.
Reasoning about digital poetry
and literature, Bootz [13] draws a line between two
modes of assembly, which can be extented to the other
forms of art:
- « combinatorial », using pre-built text fragments according to
specific algorithms,
- « automatic » combining words (from a dictionary) and assembly
rules (grammar, style).
We appreciate the distinction, but do not find the words appropriate, since
"combinatorial" is also automatic, as it uses algorithms, and
"automatic" is explicitly defined by combination. And, to cover all
forms of art, we want to add a rawer level than combinatorial, and a top level
freed from the structures of linguistics. Then we propose
- global sampling (just one fragment, typically a photograph or the video
recording of a show),
- mounting (referring mainly cinema, working with necessarily large bitsets), corresponding to Bootz combinatorial,
- grammar (referring to text but more or less naturally adaptable to other
forms of art), using smaller bitsets (words,
elementary forms) , but generally directly tied with at least some basic
meanings; this corresponds to Bootz automatic
- coding, for the most "digital" creation processes, where fragments
are bits or quite small bitsets, meaningless either
totally meaninless (bits) or weakly (typographical
characters, pixels, bricks).
With each step we walk up, the
artistic creation is transferred from the fragments to the way they are
assembled. The creator get more freedom and
control, but at the price of a growing abstraction in the creation process. It
becomes more implicit, to take a word from Subsol
[61] about storytelling.
And coding requires a minimum of computer education, be it programming in
general of high level software tools mastering. If is
not your cup of tea, you can cooperate with professionals
which requires
an ability to cooperate and manage human resources.
Some great creators excel particularly here, for instance Miguel Chevalier (for
plastic arts) or Matt Pyle (for music and anything around), and or course all
the company leaders in performance arts.
This lowest level of digital
art amounts simply to pick out some fragment of nature (or a traditional work
of art) and to digitize it with a scanner, a camera or a recorder. Quality
results of appropriate choices of the subject and the framing in space and
time.
At this "zero" level, there is only one bitset.
It could be digital, if obtained by sampling a signal (sound or image). Here,
the meaning is totally borne by the whole document, digital or not. The
digitization is meaningless by itself, but only a step to higher level
operations.
We could call that the "analog" level of digitization. Our retinas
and ears do just that for the higher neurologic levels of hearing, seeing and
understanding. The slicing of time use in cinema and video is, in the same
manner, a digitization without introduction of meaning
Remaining at this level, some
purposeful intervention can be done by color and contrast enhancing, music
volume adjustment, etc . It can use sophisticated algorithms
(convolution/deconvolution, histogram optimization
).
Nowadays, these operations are for a large part delegated to automata
integrated in the cameras and recorders. Even the framing and shoot triggering
can be automated, by detection of human faces and their smiles.
At this level, creation is
parted into two phases: the creation of the corpus and the assembly process.
To create a corpus is to collect assets (bitsets, fragments)
in formats coherent enough to afford assembly, at least by hand but more
digitally by automatic procedures.
The assembly rules can be pure random. Interesting result is expected from
unexpected combinations. In this case, a vast majority of result will probably
to be discarded, the choice being done by the artist according to their tastes
and intentions.
More digitally, the assembly will follow algorithmic rules. They can use metatadata about each asset (a sort of database) or
automatic extraction or recognition of interesting feature (formats, coloring
type, subject
).
Then the composition techniques will differ with the
forms of art: collage, inlay or blending for still images, compositing in
cinema, etc. Lets pan the field of different
arts and media
Literature. Cadavre Exquis and Oulipo were
pre-digital models. One will find a rerview in Bootz []. Recently Desbazeille
used it on the derisive mode about digital art critics. Some storytelling could
be done at this level, but more conveninently at the
grammar level.
Music. Remix and arrangement have always been
practiced, and so more today with multitrack music processors and software.
DJing does that naturally, and could be automated or at least procedurally
controlled, at the borders of live coding (see below).
Historically, at the end of the 19th century, many musicians spent a
lot of time in recording folklore and using it for new creations,
but with strong manual reconstruction.
More procedurally, in the 1950s, Pierre Schaeffer [56] and the concrete
music movement,tried to
create a new music from sounds from nature and the industrial world. With
limited success.
More globally, the choice of plays for a concert, as well as the making of a
playlist on your personel computer are forms of
mounting.
Still images. A typical and simple example: the
images done by assembly of four horizontal stripes by Julien Levesque. Here we
have a small number of fragments, each one quite loaded with meaning, and the
global message will be a sort of global universe. Long before him, the process
began, at least, with the collages by Ingres [28], the photographic compositing
of Reijlander [14] and is today a base of compositing and matte
painting. Of course, by this time, assembly was done by hand. The collages of
the Cubists and Dadaist and the Oupeinpo experiments
added fantasy and random. Today, Du Zhenjun for
instance, pushes the process at its limits.
Du Zhenjuns
Babel series pushes mounting to its limits.
Textures, volumes and lights can be seen as fragments
that are assembled in the rendering phase. Each fragment is potentially rich in
meaning. Forms represent object structures,
textures refer to matters and lights to the environment.
Cinema. Mounting of the cuts is considered the
central part of cinematographic art. Unfortunately, the mounting rules (one
could tell the grammar) are seldom published. Then, in spite of the years, Eisenstein (see for instance [24])
remains a useful reference.
Metacrane, by Thomas Israel is an
extreme example of generative algorithmic mounting. He took all his corpus of
videos, fragmented them in a base of cuts, and presents them in succession
according to an algorithm mainly stochastic but using some parameters go get
some coherence and so model the natural succession of scenes in our brain.
Fragmentation went deeper than cinema mounting with the advent of analog video
[51] then of digital film.
Animation is much more digital than traditional cinema, since compositing and
mounting can much more make use of different kinds of assets. Not only textures
and volumes as with images, but also movements and facial expressions acquired
through motion capture.
Sculpture and architecture.
Mounting of diverse
elements is a classical inspiration of kinetic art (Tinguely,
Keene). Classic architecture used the basic motives of the three orders
(doric, ionic, Corinthian).
Contemporary architects are more oriented to deeply integrated forms, with
organic connotations (typically Zaha Hadid). They also fragment the whole into
structural/functional parts on the one hand and a skin around.
Bio-art has a traditional bias to assembly of strongly meaningful fragments,
like trees and plants in gardening. More recent forms tend to create chimeras,
or cyborgs. Stelarc and Orlan
transform their bodies with implants.
The linguistic model is
strongly pregnant in art analysis and critic. Saussure [55] is the main
reference. He had been preceded in plastic arts by at least Charles Blanc and
Viollet-le-Duc but his models of language as a system
oppositions has inspired structuralism and art analysis.
Grammatical generation, from a codified and standard set of meaningless (or
weakling meaning) bitsets is a major avenue of
generative art, though coding takes it farther.
Literature. Linguistic structures are here at home, with their
generative grammars. Jean-Pierre Balpe [8] has been a
major reference for this form of art for decades, and
has still recently taken part in generative projects like Capture. An extensive
review of the domain is given by Bootz [13].
Here, the rules of assembly are clearly given by the dictionary and grammar...
but only the structural laws and some schemantic
schemes (subject, predicate, complement...). Another set of rules can be
derived from a formalization of an author's style (typically, Balpe for Flaubert, musical pastiches of Mozart, or
generators of images à la Mondrian). The rest is let to random or to
"manual" operations by the author.
Oriental languages make a complex and synesthetic use of grammar, since
ideograms can have meaning both directly (for instance 中 for middle) and by definitions.
Calligraphy and Haiku poems draw on this duality, and some attempts have been
done to use it in digital works.
On a large scale, the rules of construction of a narration can be considered as
a grammar.
Music. Nearly all music applies grammatical
rules, be they in synchrony (harmony) or diachrony (counterpoint). That made of
music one of the first art domains to be explored by computers,
See for instance Composer au XXIe siècle. Pratiques, philosophies, langages
et analyses by S. Stevance [60], and the regular
flow of publication by Ircam (Paris), though a large
part of computer music works at the coding level more than at the grammatical
one.
Still images. The impressionist touch and the pointillism
are actually reduction to small and individually
meaningless fragment. But they relate more to the human visual system operation
than to a proper research of meaning by construction, though remaining more
visible than the cinema frames. The arrangement of touches and points is made
by analog correspondance with the subject
represented.
Structural/grammatical construction of images are at the core of the Bauhaus
movement, with the texts of Kandinsky [39] and Klee [38] for the form, and Itten [33] for colors.
More explicitly, George Stiny and James Gips [26] proposed a grammar of forms, inspired by the
generative grammars of Chomsky.
This approach is never quoted in image processing or literature about
algorithms in art. But it was never forlorn, as shows a review presented in
1999 by Gips Computer implementations of shape
grammars, by Gips in a MIT symposium [27] It
contains a list of 26 grammars of forms, several of which are available as
software tools.
Sculpture. The brick is a basic element for a
possible grammar, and cement as a tool for 3D programming
Thus also a
form of superiority of the Plakat game over Lego:
your construction creativity is limited only globally by the total number of
elements, not by the number of a specific piece.
Here each system looks for a balance between the superior meaning content and
high definition similarity of each component and the generality of more
universal components, which will create "aliases" as do large pixels
in painting or voxels in sculpture.
A grammar to build coffee machines, has been devised by Agarwal and Cagan [2], but as far as we know, never been used in
practice. It remains nearly a form of conceptual art.
Performance
Theater is based on
language and gesture, then integrate the grammar of language and the much less
(if at all) formalized structure of gesture and expression.
Shaekespeare raised the mounting structure of
the Italian comedy to modern theater grammar by a typicall
transfer of meaning
- from the mounting large fragments (the characters of Italian Commedia), with
their own meaning and freedom within the loose structure of a global scenario,
- to the grammar of a text completely worded by the author, which has to be
respected by each actor, with of course the important coloration of their
personalities.
Choreography has for long developed some sort of language and grammar. Laban's
language is typical (See Lon [42] and Laban [40] (in French). The dancer Myriam
Gourfink [30] uses it through scores generated by a
computer, that she reads in real time, from screens around her, during her
performance on stage.
Coding is the extreme border of
fragmentation assembly. The creation is totally digital
nearly. The limit
is never totally reached, since any language we use to control
or program retains always the minimum of analogy with the structures of our
brain and sensorimotor system.
It can really be creation of meaning directly from meaningless bits if your
work at a very low level, let's say by assembly of logic gates at a hardware
level. An AND gate can mean everything (including, of course, the properly
logic function AND). But if you assemble several gates, you get an adder, which
is definitely associated with arithmetic meaning.
You remain very near to this level if you use microcontrollers (as does for instance
Alain Le Boucher for his LEDs sculptures). But, as soon as you use a
full-fledged processor, you work with bitses of
some length) and, even using "machine language", you work wihin the frame of a Von Neumann machine, with its ALU
(Arithmetic and logical unit), RAM (Random Access Memory) and his basic set of
instructions.
All the more so if you use "high level"
programming languages (C++ and variants, Java), and still more with specialized
tools (word processing, musical sequencers and home studios, graphic sofware, and surface controls for performane).
But, nevertheless, you code. And coding opens really the road to generativity
and interactivity.
So, the different levels of language pile up. In our Roxame
software, for instance, we use Processing, which is based upon Java and below it upon machine language, the operating system and the
linguistic part of the processor itself. But, Roxame
lets you build macro-instructions that can call other macroinstructions, up to
the point where one character only can trigger a rather heavy set of procedures
and apply it indefinitely.
Nobody has expressed so clearly the power of coding than Anne-Sarah Le Meur, a plastic artist specializing in images and
interaction. Starting with a "lyrical
abstraction" sensitiveness, she has felt the excitement and power of
digital systems and programming. Exhilarated by the richness of the creation
spaces so opened, she dared to launch concepts as "negative light
"and transgressing the traditional classifications: "The images are
abstract, but organic metaphors of a world both cellular and cosmic, very
fleshly, minimal to the point where they become archaical,
a sort of anti-semantic (pre-linguistic) vision".
Literature. It seems difficult to go deeper than
the grammatical assembly. But you can code grammar, and possibly generate
irregularities, which are essential in poetry, as comments Leech [].
Programming by itself may be considered an art, since a program is a text,
which can be aesthetically appreciated independently of its functions.
That's certainly true in principle. But this kind of beauty can be appreciated
only by other experienced programmers.
Music. Music software and instrument
design dig deep in direction of the bit level. You actually
reach it if you work on hardware and can solder elementary circuits.
At first sight, a musical note is very simple: a pitch and a duration. But a
note has timber, which is a more or less complex
combination of frequencies. And the note is not uniform along its duration,
following notably the ADSR structure (attack, decay, sustain, release).
At a higher level, the way Wagner composed comes very near to object oriented programming, with a major class: the characters,
and their specific variables and methods.
Live coding at La Fabrique
(Nantes, France), by the Apo33 group, using the Pure Data language.
Live coding reaches interesting limit issues. Programming is a demanding
intellectual task, and even when you have got the idea, it takes some time to
code it properly. That induces several constraints on live coding:
. the music cannot evolve rapidly, since from one change to another one, you have to write your code
. it takes to write the music as
"loops", which afford to be called rapidly by their names, but limit
the universality of your live interventions.
Still images. In images, it seems that we could go
deeper than the pixel if not the bit itself, working on the points, using
meshes, vectorial grahics
and formal calculus.
But, in practice, images have to be displayed on
screen or printed on paper
then we are back to pixel matrices.
Cinema. Procedural techniques (modeling,
textures) are taking it upon sampling, for quality as well as to reduce costs,
using more and more automated functions instead of artists.
At a global level, two main
types of composition are opposed in The Language of New Media by Lev
Manovich [45]:
- narratives, or argumentations, are linear, with an opening and an end; in the
between progress is made according to various schemes; the basic rules were set
by Aristotle in his Poetics [3] and Rhetorics [4],
depending on the finality (artistic, political...); they were born for human
performance and remain so today.
- databases are basically bi-dimensional, with a series of objects and, for
each of them, a series of features; even if such structures were prepared by
the articulations ot thougt
in the middle ages (Summae) and then the dictionaries and encyclopedias, they
are typically a product of the computer, and well adapted to automated
processing.
Beyond their technical
opposition, narrations/argumentations and data bases match different
philosophies and, more recently, different ways of creating and receiving art.
Narration and argumentation follow the natural human behavior: an individual
talking and acting on a "line". There is a past, a present and a
feature, highs and lows, and why not left and right. It takes to dramatization,
engagement. Data bases are more digital, with their multidimensional fragmentation
and openness, engaging the readers to freely assemble their own narrations.
Religions, nationalisms and ideologies in general are built upon grand
narrations or, more exactly, build them during their foundation years.
Modernism drew databases out of them, but for a large part replaced them with
new grand narrations, like Condorcet's Esquisse
dun tableau historique
des progrès de lesprit
humain [17] for the French revolution, the great
texts of American Independance, the global epics of
Soviet Union (with the films of Eisenstein) or People's republic of China.
Nowadays, the database model
and postmodernism seem on the way to definitely win
over narrations. Letting us free but disoriented in a fiercely changing world.
Whitelaw [66] writes : "New media also fractures
that technocultural material into millions of
heterogeneous interests and agendas, specific investigations, aesthetics,
approaches, and projects".
Forty years have passed since the days of Mille Plateaus [20] (by
Deleuze and Guattari and the French school
with its vocabulary that raises skepticism in non-nonsense minds. But they are
still an inspiration for present thinkers like Katherine Hayles,
in How we think [32] as well as, at the
cultural and geographical antipodes, Hiroki Azuma Otaku [7].
Perhaps are we walking up a new step wih Anna Munster
in her An Aesthesia of Networks, Conjunctive Experience in Art and
Technology. [54]. Here also, the blossoming vocabulary may disconcert, with
sentences like "Here the diagram becomes a machine for expressing the
relational thingness of networks; here an aesthesia of networks edges into
perception". She builds daring bridges between the Web and the brain
structures
Is the "Cloud" able to bring the sense and meaning we so strongly
need, to propose a new grand narration? We have seen above the limits of this approach, and think that the important narration develops in
the middle, with the high level bitsets inspired by
life and humanity. Isnt life a more
concrete way, for the best and the worst, to build a new world..
Indeed, digital art is more and more active on this axis.
Let's see it from the art
standpoint. Somewhere betwwen bit and cloud, higher
and ever higher levels of bitsets are developing.
Some of them we consider as living, others with only some life features, others
as more or less humans, humanoids. Reaching here is to enter the "uncanny
valley" where our creations become similar to us, but with small
imperfections which reveal their deep difference in nature, and then are
disturbing, if not threatening.
It has been a literary topic since Antiquity, but it's more and more important
for art today:
- as an inspiring theme: robots are more and more present in our lives; the
transhumanist singularity [39] is no longer a pure dream but the theme of a
university funded by important corporations;
- as a sort of medium, since artists can themselves become creators of biologic
or bio-inspired works of art.
The creation follows several different paths, more or less engaged in actual
living processes: representation of life, generative art, robotics, cyborgs.
A review of literature, comic
books, paintings and artistic performance arts about life and robots would list
thousands of titles and artists. Just some notes.
In the West, these representations are sometimes softly humorous, like the
videos of Catherine Nyeki, but more generally
negative, from Fritz Lang's Metropolis to the Wachowkys'
Matrix, with the remarkable exception of Disney's Wall-E. It's
very different in the Japanese culture, where robot can be perverse, but are
more frequently friendly and saviors of the human race,
as show for instance the series of lectures edited by Lunning
[44].
Generative art focuses on the
capacity of computer programs to behave like living beings and somehow to
become artists by themselves. Pierre Berger and Alain Lioret
have dedicated a book to this subject [10].
This form or art models different facets of life, borrowing from (and
contributing to) artificial intelligence and artificial life development. It
stresses three patterns: autonomy, interactivity, reproduction.
Autonomy. A bitset
becomes autonomous as far as it behaves in an unpredictable manner. Then random
functions are here a basic tool. But random alone would not give interesting
results without composition with rules governing the behaviors. This point is basic
for artists like Antoine Schmitt, François Zajega...
and
with our Roxame software. Neural networks
bring another kind of modeling
less "centralized",
and have been applied to art by Michel Bret. A major aspect of autonomy
is self-reference (an English equivalent of the Greek autonomous).
Recursive functions bring the mathematical ground to "self", and are also widely used here. They are rarely shown
explicity in art, but there are some examples, like
the bugging program of Samuel Bianchini's In
Realities I am a bugged program or the iterative video shooting N+1
by Stéphane Trois Carrés.
Note that the fragmentation/assembly process is generative by itself. If you
have a two series of objects, of respectively m an n numbers, the direct
addition of the two will give you m + n objects. If, on the other hand you have
a series of m + n features for a same category of objects, the
combination of the two opens a space of m.n objects,
which is many more as soon as m and n are greater than 2. By itself, this
operation opens the way to exploration of the new spaces and creation of new
objects.
Communication and
interactivity This is an important feature of living beings, a base or their
ability to survive against entropy. In art, interaction has been heralded at
least since the 1970's, with a frequent use of the temr
"spectactor". Digital artists make use of
the natural ability of computers to use sensors and effectors.
Interaction with Corps en resonance, by Naziha Mestaoui. At left, what
the casual visitor sees. At right, the full richness awakened by a performer.
Many "interactive" works, videos and sculptures, require some
training, if not professionalism, to offer their full expression, which then
becomes a sort of performance.
We have a proof of it with the Naziha Mestaoui' chanting bowls, Corps en
résonance. The casual visitor or the critic in a
hurry will see a quite poor installation with minimal moves. Only an informed
performer will really raise the full power of
the work.
Florian Aziosmanoff [] has made reflections on the
way we could do better, with a richer perception of the public behavior, and
works answering also with more elaborate behavior, in what he calls
"living art". This point could evolve favorably in the years to come.n
Reproduction. Population breeding is another way of
combining random and fitness. The topic is dealt with notably by Whitelaw [66]
and Johnston [36]. Sommerer & Mignonneau did
create a lot in this domain, and nowadays show it mainly with their funny Lifewriter.
Viruses are a fascinating case of "living beings". In nature as in
computing, they exists at the limit between life and
non-life: they reproduce themselves, but cannot live independently of another
autonomous being (computer or living organism). Ludwig [43] concludes
cautiously a long discussion: "A far as evolution goes, viruses may be
imagined to be alive, unless evolution itself...".
But they are rarely studied outside of the hackers and security professionals circles. A form of viral art has been
developed by Nechvatal, but only on the
disintegrating function of viruses and not in their positive aptitude to multiply
and develop (and, today, to change their appearance in order to escape the
antivirus software).
Less prejudiced, but perhaps no less dangerous, are the artificial life models
in their advanced forms. Are living processes of Conway's game of life of the
genetic processes really art, as told in Metacreation,
art and artificial life, by Mitchell Whitelaw [66]?
Until now, the works of Karl Sims, Driessens & Vestappen, Steven Rooke... remain quite out of the art
world. Perhaps, as Whitelaw lets us think, is this vein exhaused,
at least temporarily. Perhaps, as for artificial intelligence in general,
should we wait for a larger availability of powerful machines like the IBM Watson..
Here also we are on the borders
of research and art. Artists properly speaking give frequently derisive
presentations of robots. Or at least ambiguous, like Robot mon amour, by France
Cadet.
Robots begin to play on stage, to begin with music, where they are more and
more able accompanists. Or as a full rock group, like Capture, a
collective work by Olivier Alary, Jacopo Baboni Schillingi, Jean-Pierre Balpe, Crystelle Bédard, Grérogy Chatonsky and Dominique
Sirois.
This art form is limited by the cost of robots, the difficulty of programming
them... and their possible obsolescence. A subtle work like The
little Red Riding hood by Florent Aziosmanoff,
staged three Aibo dogs (See a description in [6]),
but is now impossible to run again due to the end of production and support by
Sony.
Life did not wait for men to use digital techniques,with
the DNA and its pairs of bits implemented as base pairs. And some vegetal forms
or animal behaviors may be perceived by us as artistic. For long, humans have
oriented and more or less controlled the living
processes for artistic aims, by gardening and breeding.
This form of art remains active. It operates on organic soups (Honf), vegetals (Howard Boland
and Laura Cinti's Nanomagnetic plants), tissues (Oron
Cattes and Iona Zurr) and
even on complete animals, like the luminescent rabbits of Eduardo Kac.
Convergence of robotics and biotechnologies converge towards humanized machines
and augmented humans. But this view of superior beings cannot go
without the universal cooperation called by the cloud and, for art, implemented
through transmedia.
Art tends naturally to the
universal, from the antique Seven marvels of he World to some oxymoronic brands as Art Basel
Miami. "New media art self-consciously reworks technology into culture
it does so... with a nonindustrial attitude that admits misapplication and
adaptation, rewiring and hacking, pseudo-functionality and accident", says
Whitelaw [66] about artificial life. Transmedia goes the same way., as says
Jenkins [35].
These global forms can be seen as the media facet of
the Cloud or, better, as the present best way to combine the universality of
the cloud with the creativity and pleasure of all, from artists to spectators
and from individuals to large communities.
We build together a new world. We... including the robots? For the
best or the worst ? For the dictatorships of Orwell's 1984?
For a general (and rather happy) control by Asimov's robots ?
For indefinite fights between the super-humans of Bennett [9]? The peaceful Ecotopia of Callenbach or the network aesthesia of Anna Munster ?
Cultural assets will play a
major part in the future. Digital artist, as far as their
to dive down to the bits, can play their part in the foretelling and the
development of our future.
All artists quoted in this communication are listed and commented in diccan.
[1]Adams,
R. , Gibson S. and Muller A. 2008. Transdisciplinary digital art. Sound,
vision and the new screen. Conference, Zurich and Victoria (Canada)
2006-2007. Springer 2008
[2]Agarwal, M. and Cagan, J.
1998. A blend of different tastes, the langage of
coffeemakers. Environment and Planning. B. Planning and Design, volume 25,
1998.
[3]Aristotle. Poetics. http://www.gutenberg.org/files/1974/1974-h/
1974-h.htm
[4]Aristotle. Rhetoric. http://ebooks.gutenberg.us/Alex_Collection/
aristotle-rhetoric-86.htm
[5] Asancheyev, B. 2002. Epures de géométrie descriptive. Hermann,
Paris, France
[6]Aziozmanoff, F. 2010. Living
Art, Une forme dexpression
spécifique au medium numérique. CNRS Editions. Paris, France.
[7]Azuma, H. 2009. Otaku.
Japan's Database Animals. University of Minnesota Press. Minneapolis.
[8]Balpe, J.-P. 1986. Initiation
à la génération de textes en langue naturelle. Eyrolles, Paris, France.
[9]Bennett, C. L. 2012. Only superhuman. Tom Doherty, New York, NY.
[10]Berger, P. and Lioret, A. 2012. L'art génératif.
Jouer à Dieu, un droit ? un devoir ? L'Harmattan, Paris, France.
[11]Berger, P. Aesthetics and Algorithms : around
the Uncanny Peak. Laval Virtual 2013 proceedings.
[12]Blanc, C. 1863. Grammaire des arts du dessin.Librairie Renouard,
Laurens, Paris, France.
[13]Bootz P. La literature numérique.
http://www.olats.org/livresetudes/basiques/litteraturenumerique/basiquesLN.php
[14]Brinkmann, R. 1999. The
art and science of digital compositing. Morgan-Kaufmann.
[15]Burks, A. Goldstine H.
and von Neumann, J. 1962. Preliminary
discussion of the logical design of an electronic computing instrument.Datamation
vol. 8, September and October 1962. The text has been reprinted in a book of
lectures (G. Bell and A. Newell,
Computer structures : readings and examples.
New-York, McGrawHill, 1971).
[16]Cavazza, M. and Donikian, S. (eds). 2007. Virtual storytelling. 4th ICVS,
Saint-Malo. France.
[17]Condorcet, J.A. 1795. Esquisse dun tableau historique des progrès de lesprit humain. Paris.
France.
[18]Deleuze, G. and Guattari, F. 1972. L'Anti-Oedipe. Capitalisme et
schizophrénie. Editions de minuit. Paris. France.
[29]Deleuze, G. 1983-1985. Cinéma 1. L'image-mouvement. Cinéma 2.
L'image-temps. Editions de minuit. Paris. France
[20]Deleuze, G. and Guattari F. 1980. Mille plateaux. Capitalisme et
schizophrénie. Editions de minuit, Paris. France.
[21]Deleuze,
G. and Guattari F. 2004. A Thousand Plateaus.
London and New York: Continuum, 2004.
[22]Ducrocq, A. 1953. LÈre des Robots Julliard,
Paris, France.
[23]Dyson G. 2012. Turing's Cathedral. The origins of digital universe. Pantheon.
[24]Eisenstein, S. 1949. Film Form. Essays in Film
Theory. Edited and translated by Jay Leyda.
Harcourt Brace. New York. NY.
[25]Ebert, D.S., Musgrave, F. Peachey, D. Perlin
K. and Workey S. 2003. Texturing and
modeling, a procedural approach. Morgan Kaufman.
[26]Gips, J. and Stiny, G. 1979. Algorithmic Aesthetics. Computer models
for criticism and design in the arts. University of California.
[27]Gips, J. 1999. Computer
Implementation of Shape Grammars. http://www.shapegrammar.org/implement.pdf
[28]Goetz, A. 2006. Ingres collages. Le
Passage. Paris. France.
[29]Gombrich, E.H. 2002-2005 Art & illusion. A study in the psychology of pictorial representation.
Phaidon.
[30]Gourfink, M. 2012. Danser sa
créature. Les presses du réel. Greenberg, C. 1961. Art and
Culture. Critical essays.
Beacon Press.
[31]Greene, R. 2004. Internet Art. Thames and
Hudson
[32]Hayles, N. K. 2012. How
we think. Digital media and Contemporary Technogenesis.
University of Chicago Press. Chicago.
[33]Itten, J. The Art of
Color: the subjective experience and objective rationale of color. New
York: Van Nostrand Reinhold
[34]Jenkins, H; 2006. Convergence Culture.
Where old and new media collide. 2006. New York University Press. New York.
NY.
[35]Jenkins, H., Ford S. and Green J. 2013. Spreadable
media. Creating value and meaning in a networked culture. New York
University Press. New York. NY.
[36]Johnston J. 2008. The allure of machinic life.
Cybernetics, artificial life and the new AI. MIT Press, London, UK.
[37]Kandinsky, W. . Kandinsky, Complete Writings on
Art. Da Capo Press.
[38]Klee, P. 2004. Cours du Bauhaus, Weimar
1921-22. Contribution à la théorie de la forme picturale. Musées de Strasbourg. Strasbourg. France.
[39] Kurzweil, R. 2009. The
singularity is near. London, Duckworth. .
[40]Laban, R. 2003. Espace dynamique. Contredanse, Bruxelles. Belgique.
[41]Leech, G.N. 1969. A
linguistic guide to English poetry.
Longman.
[42]Lon. 2008. The Dynamic Body in Space. Ed.
by Preston-Dunlop, V. Laban International Conference. Dance Book Publication.
[43]Ludwig, M. 1993. Computer viruses, Artifical Life and Evolution. American Eagle. Tucson.
AZ.
[44]Lunning F. (ed.) 2006-
2012 Mechademia. One edition each year.
University of Minnesota Press.
[45]Manovich, L. 2001. The language of new media.
MIT Press, Cambridge, Mass.
[46]Maréchal, J. 2004. The Psychology of the Mystics . Dover, NY.
[47]Merton, T. 1949. Seeds of contemplation.
Hollis and Carter.
[48]Meyer, B. 2009. A touch of class.
Springer.
[49]Moles, A. 1972. Théorie de l'information et perception esthétique. Denoël. Paris. France.
[50]Mumford, L. 1970. The Myth of the Machine.
The Pentagon of Power. Harcourt Brace, New York.
[51]Parfait, F. 2001. Vidéo: un art
contemporain. Editions du Regard, Paris.
[52]Robida A. 1884. Le vingtième siècle. Edition Georges Decaux, Paris. Extract on line .
[53]Robida A. 1883. La
vie électrique. 1883.
[54]Munster, A. 2013. An Aesthesia of Networks.
Conjunctive Experience in Art and Technology. MIT Press.
Cambridge, Mass. .
[55]Saussure, F. 1916. Cours de linguistique générale, ed. C. Bally and A. Sechehaye,
with the collaboration of A. Riedlinger, Lausanne and
Paris: Payot; trans. W. Baskin, Course in General
Linguistics, Glasgow: Fontana/Collins.
[56]Schaeffer, P. 1966. Traité des objets
musicaux, essai interdisciplines. Seuil, Paris, France
[57]Shapiro, J. 2005. 1599.
A year on the life of William Shakespeare. Faber & Faber, London. UK.
[58]Sismondi, J.-C.-L. 1819. New Principles of
Political Economy..
http://books.google.com/books/about/New_principles_of_political_economy.html?id=T4f6HUXdoyUC
[59]Schillinger, J. 1948. The mathematical basis of
the arts. Philosophical library, New York, NY.
[60]Stevance, S. (ed). 2010. Composer au XXIe
siècle. Pratiques, philosophies, langages et analyses. Vrin. Paris,
France[55]Thibault, E. 2010. La géométrie des émotions. Mardaga, Paris,
France.
[61]Subsol, G. (ed.) 2005. Virtual storytelling. Third ICVS, 2005.
Springer.
[62]Thibault. E. 2010. La géométrie des émotions. Mardaga,
Paris.
[63]Verne J. 1889. The
Day of an American Journalist in 2889, published in the American
magazine 1889. Integral text, online.
[64]Viollet-le-Duc, E. 1854_1858. Dictionnaire raisonné de l'architecture
française, du XIe au XVIe siècle. Morel,
Paris, France.[57]Weaver, W. and Shannon, C.E. 1963. The
Mathematical Theory of Communication. Univ. of Illinois Press.[58]Whitelaw M. 2004. Metacreation.
Art and artificial life. MIT Press, Cambridge, Mass.
[65]Weaver, W. and Shannon, C.E. 1963. The Mathematical Theory of Communication.
Univ. of Illinois Press.
[66]Whitelaw M. 2004. Metacreation. Art and artificial life. MIT
Press, Cambridge, Mass.